If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2+3v-20=0
a = 1; b = 3; c = -20;
Δ = b2-4ac
Δ = 32-4·1·(-20)
Δ = 89
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{89}}{2*1}=\frac{-3-\sqrt{89}}{2} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{89}}{2*1}=\frac{-3+\sqrt{89}}{2} $
| 5^(2x+1)=12 | | n+4=6*3 | | 24=-m+8+5m | | 14=-2/5u | | 5m-6,m=7 | | 14y-4y-9y+2y=18 | | K+1-6k=-19 | | k+10=27k+10=27 | | -6n-10+4n+6=20 | | -8p-4p=24 | | 21-2h=15 | | 0.625x+0.875x+15=0.25x-6 | | 2j+17=-9 | | 113x1x=75-1+1x | | -11=-7x-4x | | -4y+17=-3 | | 4(x-3)=-3(5-x) | | 3j+3j+2j+2j-j=9 | | 53=r4 | | -3/7=-2/3+x | | -311=20x-11 | | 5x-6=-2x+35 | | -7n+24=-39 | | (-5-n)/9=-8 | | 92=-2r+18 | | x^2+x+9=20 | | 103x-6=-6x-103 | | 2.1d=51 | | 0.5x=16+0.25x | | x2+99=20x | | 3(x+2)=7(x+1) | | -8=4x-8x |